
RELATIVITY AND COSMOLOGY I
Solutions to Problem Set 3 Fall 2023

1. Spherical polar coordinates

(a) The metric is a (0, 2) tensor, and as such it transforms as follows

gµν(x) = ∂x′α

∂xµ

∂x′β

∂xν
gαβ(x′) . (1)

Plugging in certain values of µ and ν, we retrieve the correct components. For
example,

grr =
(

∂x

∂r

)2

gxx +
(

∂y

∂r

)2

gyy +
(

∂z

∂r

)2

gzz

= sin2 θ cos2 φ + sin2 θ sin2 φ + cos2 θ = 1 .

(2)

This can be done for the other components, and you should eventually obtain

ds2 = dr2 + r2dθ2 + r2 sin2 θdφ2 . (3)

(b) Given
x(λ) = cos λ , y(λ) = sin λ , z(λ) = λ , (4)

we immediately derive

r(λ) =
√

x(λ)2 + y(λ)2 + z(λ)2 =
√

1 + λ2 ,

θ(λ) = arctan
(

x(λ)2 + y(λ)2

z(λ)

)
= arctan

(1
λ

)
,

φ(λ) = arctan
(

y(λ)
x(λ)

)
= λ .

(5)

(c) We use the decomposition of the derivative along the parameter λ in terms of
derivatives in the coordinates

d

dλ
= dxµ

dλ
∂µ . (6)

In the Cartesian coordinate system,

d

dλ
= − sin λ∂x + cos λ∂y + ∂z . (7)

The components of the tangent vector in Cartesian coordinates are thus (− sin λ, cos λ, 1) .
In the spherical polar coordinates,

d

dλ
= λ√

1 + λ2
∂r − 1

λ2 + 1∂θ + ∂φ , (8)

so that in spherical polar coordinates, the components of the tangent vector are(
λ√

1+λ2 , − 1
λ2+1 , 1

)
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2. Rindler coordinates

(a) You saw in the lectures that the dynamics of a particle in an electromagnetic field
are described by

dpα

dτ
= qF αβUβ , (9)

where Uβ = dxβ

dτ
is the four-velocity. The spatial components give the familiar

equation for the Lorentz force
d~p

dt
= q( ~E + ~v × ~B) , (10)

where we used dt = γdτ . The time component describes the evolution of the par-
ticle’s energy E ≡ p0

dE
dt

= q ~E · ~v . (11)

We are interested in the case ~B = 0 and ~E = (E, 0, 0) uniform. The equation (10)
can be integrated. For a particle that starts at rest, we get

px(t) = qEt . (12)

Moreover, equation (11) becomes

dE
dt

= qE
dx

dt
, (13)

which can be integrated to give

E(t) = E0 + qE(x(t) − x0) , (14)

where E0 is the initial energy of the particle at rest. At the same time, we have that
the mass shell condition reads

E2(t) = E2
0 + p2(t) = E2

0 + (qEt)2 , (15)

where E0 ≡ mc2. That means that, necessarily,

x(t) = E0

qE

[√
1 + q2E2

E2
0

t2 − 1
]

+ x0 , (16)

matching what is written in the problem set, when a = qE
E0

. What happens for a
massless particle?

(b) That can be done by setting x0 = 1
a
. Then,

x = 1
a

√
1 + (at)2 (17)

and
x2 − t2 = 1

a2 (18)

which is verified by a parametrization

x = 1
a

cosh α , t = 1
a

sinh α , (19)

for any α .
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(c) With the parametrization discovered before, x = 1
a

cosh α, t = 1
a

sinh α one can
compute the interval along the path. Using the chain rule:

dτ 2 = dt2 − dx2 =
(1

a
cosh α

)2
dα2 −

(1
a

sinh α
)2

dα2 = dα2

a2 (20)

Proper time along this path is

τ =
∫

dτ =
∫ 1

a
dα = α

a
(21)

Inverting relation t = 1
a

sinh α = 1
a

sinh aτ gives the relation described in the exer-
cise,

τ = 1
a

sinh−1 at (22)

(d) The rocket observer is measuring the time and position of P in terms of the time
that elapses between the moment in which she sends the signal and the moment in
which she receives it back. Since light moves at a constant speed, she defines t′ as
the average of the total time spent, and x′ as half of the total distance traveled by
the signal. That is the consistent way of building a reference frame for an observer
in GR.

(e) Summing and subtracting her definitions of t′ and x′ we get

t′
A = t′ − x′ , t′

B = t′ + x′ . (23)

From the laboratory observer instead we have

x − t = xA − tA , x + t = xB + tB . (24)

For a generic motion t = f0(τ) and x = f1(τ) we have

t − x = tA − xA = f0(τA) − f1(τA) = f0(t′ − x′) − f1(t′ − x′) ,

t + x = tB + xB = f0(τB) + f1(τB) = f0(t′ + x′) + f1(t′ + x′) ,
(25)

where we used that the proper time of the rocket is τA = t′
A .
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(f) In the specific case of uniform acceleration we can use the result from the first part
of the exercise

f0(τ) = 1
a

sinh(aτ) , f1(τ) = 1
a

cosh(aτ) , (26)

and obtain
t − x = −1

a
e−a(t′−x′) ,

t + x = 1
a

ea(t′+x′) ,
(27)

which leads to
t = 1

a
sinh(at′)eax′

,

x = 1
a

cosh(at′)eax′
.

(28)

(g) We can check two things. First of all, we check that the time inside the rocket
(t′|x′=0) corresponds to what we called before proper time

t = 1
a

sinh(at′)eax′ −→ τ = t′|x′=0 = 1
a

arcsinh(at) , (29)

which exactly corresponds with the expression we had before. Moreover, we get

x|x′=0 = 1
a

cosh(at′) = 1
a

√
1 + sinh2(at′) = 1

a

√
1 + a2t2 , (30)

again in correspondence to what we had before.

(h) From the transformation laws we derive that

dt = eax′ [cosh(at′)dt′ + sinh(at′)dx′] ,

dx = eax′ [sinh(at′)dt′ + cosh(at′)dx′] ,
(31)

so
ds2 = e2ax′ (−dt′2 + dx′2

)
. (32)

(i) Let us start from the transformation laws

t = 1
a

sinh(at′)eax′
,

x = 1
a

cosh(at′)eax′
.

(33)

The Rindler coordinates are in the range

t′ ∈ (−∞, ∞) and x′ ∈ (−∞, ∞) , (34)

Notice that
2 cosh(x) = ex + e−x > ex − e−x = 2 sinh(x) (35)

so that necessarily 0 < t < x. This is the Rindler patch. On the Minkowski plane,
draw two lightrays, one going from the origin to x = ∞ and one going from x = −∞
to the origin. The Rindler patch is the space in between these two lightrays.
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(j) Consider the lightray going to the right, with some x0 < 0

x(t) = x0 + t (36)

and the trajectory of the rocket (where we put x0 = 1
a

as suggested by the exercise)

x(t) = 1
a

√
1 + a2t2 . (37)

We set them equal to each other to find whether there are intersections between the
two trajectories. We square the two sides but we keep in mind that this means we
will effectively be considering both x(t) = ± 1

a

√
1 + a2t2.

x2
0 + t2 + 2x0t = 1

a2 + t2 (38)

This has a solution
t∗ = 1

2x0a2 − x0

2 . (39)

We want to ask for which x0 is this solution positive. The result is

x0 < −1
a

, 0 < x0 <
1
a

. (40)

This makes sense: the signal can reach the rocket only if it is sent at a distance
between 0 and its initial position 1

a
. The solutions at x0 < − 1

a
are instead unphysical:

they correspond with intersections between x = x0 + t and x = − 1
a

√
1 + a2t2.

3. Surface

(a) To compute the length of a generic curve γ : xµ(λ) = (r(λ), φ(λ)), we act with ds2,
a (0, 2) tensor which takes two vectors as input and returns a number, on two copies
of the tangent vector to the curve V = dxµ

dλ
∂µ.

ds2(V, V ) = grr(λ)
(

dr

dλ

)2

+ gφφ

(
dφ

dλ

)2

. (41)
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This is an infinitesimal distance squared. If we want to compute a finite distance
over some values of λ, we take a square root and integrate over an interval

Lab =
∫ b

a
dλ

√√√√grr(λ)
(

dr

dλ

)2

+ gφφ

(
dφ

dλ

)2

=
∫

dλ

√√√√(1 + r2(λ)
a2

)(
dr

dλ

)2

+ r2(λ)
(

dφ

dλ

)2
(42)

In this case we are interested in the curve r(λ) = R and φ(λ) = λ , on the interval
λ ∈ [0, 2π]. This gives

LC =
∫ 2π

0
Rdφ = 2πR . (43)

(b) To compute the area inside the curve, we use the fact that the correct invariant area
element is given by ε =

√
|g|dr ∧ dφ. We get

AC =
∫ √

|g|drdφ = 2π
∫ R

0

√
1 + r2

a2 rdr (44)

we change variables to ρ = r
a

and we get

AC = πa2
∫ R

a

0
2ρ
√

1 + ρ2dρ = 2
3πa2(1 + ρ2) 3

2

∣∣∣∣R
a

0
= 2πa2

3

(1 + R2

a2

) 3
2

− 1
 . (45)

(c) The distance from r = 0 to the curve C is given by

LR =
∫ R

0

√
grrdr =

∫ R

0

√
1 + r2

a2 dr . (46)

Given the hint in the exercise, we realize that the change of variables that will make
our life simpler is r

a
= sinh(x). The integral becomes

LR = a

sinh−1
(

R
a

)∫
0

√
1 + sinh2 x cosh x dx = a

sinh−1
(

R
a

)∫
0

cosh2 x dx . (47)

Using the hint, we obtain

LR = a
(

x

2 + 1
4 sinh(2x)

) ∣∣∣∣sinh−1
(

R
a

)
0

= a

2

(
sinh−1

(
R

a

)
+ R

a
cosh

(
sinh−1

(
R

a

)))

= a

2

sinh−1
(

R

a

)
+ R

a

√
1 + R2

a2


(48)

where we used sinh(2x) = 2 cosh(x) sinh(x) .
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(d) A paraboloid is defined through the equation

z = c(x2 + y2) = cr2 . (49)

The metric in R3 is
ds2 = dr2 + r2dφ2 + dz2

= dr2 + r2dφ2 + (2crdr)2

=
(
1 + 4c2r2

)
dr2 + r2dφ2

(50)

To match with the given metric, we need c = 1
2a

, so that the paraboloid is

z = x2 + y2

2a
. (51)
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